ECE 218 Signals and Systems Laboratory 9

I. PREPARATION

1) Background Information:
$x(t)$ is an aperiodic signal.
** Fourier transform of $x(t) \rightarrow x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
** Inverse Fourier transform $\rightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega$
Duality Property:
$f(t) \stackrel{F T}{\longleftrightarrow} g(\omega)$
$g(t) \stackrel{F T}{\longleftrightarrow} 2 \pi^{*} f(-\omega)$
Consider the $x(t)$ signal given below;

Let apply Equation (1) to this $x(t)$ signal:
$x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\tau}^{\tau} 1 e^{-j \omega t} d t=\frac{2}{\omega} \sin (\omega \tau)$

$x(\omega)$ is the Fourier transform of $x(t)$ and it is plotted above. Let assume that $\tau=1$, so the final expression of $x(\omega)$ becomes a sinc function:

$$
x(\omega)=\frac{2 \sin (\omega)}{\omega}=2 \operatorname{sinc}(\omega)
$$

Therefore, the Fourier transform of a rectangle function is a sinc function.

II. EXPERIMENTAL WORK

1) Plot $x(t)$ and $x(\omega)$ signals using Matlab. Observe what happens when $\tau \rightarrow \infty$ and $\tau \rightarrow 0$. Plot graphs of $x(t)$ and $x(\omega)$ for $\tau \rightarrow \infty$ and $\tau \rightarrow 0$ cases.
2) Using duality find Fourier transform of $x(t)=\frac{1}{\pi t} \sin (t \tau)$. Plot $x(t)$ and $x(\omega)$ for large and small values of τ.

Hint:

Since $x(t)=\frac{1}{\pi t} \sin (t \tau)$, by using duality $x(\omega)$ can be found as;
$x(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(t) e^{j \omega t} d t$

